This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The element of the class of disjoint relations and the disjoint relation predicate are the same, that is ( R e. Disjs <-> Disj R ) when R is a set. (Contributed by Peter Mazsa, 25-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldisjsdisj | |- ( R e. V -> ( R e. Disjs <-> Disj R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosscnvex | |- ( R e. V -> ,~ `' R e. _V ) |
|
| 2 | elcnvrefrelsrel | |- ( ,~ `' R e. _V -> ( ,~ `' R e. CnvRefRels <-> CnvRefRel ,~ `' R ) ) |
|
| 3 | 1 2 | syl | |- ( R e. V -> ( ,~ `' R e. CnvRefRels <-> CnvRefRel ,~ `' R ) ) |
| 4 | elrelsrel | |- ( R e. V -> ( R e. Rels <-> Rel R ) ) |
|
| 5 | 3 4 | anbi12d | |- ( R e. V -> ( ( ,~ `' R e. CnvRefRels /\ R e. Rels ) <-> ( CnvRefRel ,~ `' R /\ Rel R ) ) ) |
| 6 | eldisjs | |- ( R e. Disjs <-> ( ,~ `' R e. CnvRefRels /\ R e. Rels ) ) |
|
| 7 | df-disjALTV | |- ( Disj R <-> ( CnvRefRel ,~ `' R /\ Rel R ) ) |
|
| 8 | 5 6 7 | 3bitr4g | |- ( R e. V -> ( R e. Disjs <-> Disj R ) ) |