This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldisjs5 | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ Disjs ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ 𝑅 ∈ Rels ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldisjs2 | ⊢ ( 𝑅 ∈ Disjs ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ) | |
| 2 | cosscnvssid5 | ⊢ ( ( ≀ ◡ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) | |
| 3 | elrelsrel | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ Rels ↔ Rel 𝑅 ) ) | |
| 4 | 3 | anbi2d | ⊢ ( 𝑅 ∈ 𝑉 → ( ( ≀ ◡ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ Rel 𝑅 ) ) ) |
| 5 | 3 | anbi2d | ⊢ ( 𝑅 ∈ 𝑉 → ( ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) ) |
| 6 | 4 5 | bibi12d | ⊢ ( 𝑅 ∈ 𝑉 → ( ( ( ≀ ◡ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ 𝑅 ∈ Rels ) ) ↔ ( ( ≀ ◡ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) ) ) |
| 7 | 2 6 | mpbiri | ⊢ ( 𝑅 ∈ 𝑉 → ( ( ≀ ◡ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ 𝑅 ∈ Rels ) ) ) |
| 8 | 1 7 | bitrid | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ Disjs ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ 𝑅 ∈ Rels ) ) ) |