This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldisjs5 | |- ( R e. V -> ( R e. Disjs <-> ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ R e. Rels ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldisjs2 | |- ( R e. Disjs <-> ( ,~ `' R C_ _I /\ R e. Rels ) ) |
|
| 2 | cosscnvssid5 | |- ( ( ,~ `' R C_ _I /\ Rel R ) <-> ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) ) |
|
| 3 | elrelsrel | |- ( R e. V -> ( R e. Rels <-> Rel R ) ) |
|
| 4 | 3 | anbi2d | |- ( R e. V -> ( ( ,~ `' R C_ _I /\ R e. Rels ) <-> ( ,~ `' R C_ _I /\ Rel R ) ) ) |
| 5 | 3 | anbi2d | |- ( R e. V -> ( ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ R e. Rels ) <-> ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) ) ) |
| 6 | 4 5 | bibi12d | |- ( R e. V -> ( ( ( ,~ `' R C_ _I /\ R e. Rels ) <-> ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ R e. Rels ) ) <-> ( ( ,~ `' R C_ _I /\ Rel R ) <-> ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) ) ) ) |
| 7 | 2 6 | mpbiri | |- ( R e. V -> ( ( ,~ `' R C_ _I /\ R e. Rels ) <-> ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ R e. Rels ) ) ) |
| 8 | 1 7 | bitrid | |- ( R e. V -> ( R e. Disjs <-> ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ R e. Rels ) ) ) |