This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a power class difference. (Contributed by NM, 25-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eldifpw.1 | ⊢ 𝐶 ∈ V | |
| Assertion | eldifpw | ⊢ ( ( 𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵 ) → ( 𝐴 ∪ 𝐶 ) ∈ ( 𝒫 ( 𝐵 ∪ 𝐶 ) ∖ 𝒫 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifpw.1 | ⊢ 𝐶 ∈ V | |
| 2 | elpwi | ⊢ ( 𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵 ) | |
| 3 | unss1 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) ) | |
| 4 | unexg | ⊢ ( ( 𝐴 ∈ 𝒫 𝐵 ∧ 𝐶 ∈ V ) → ( 𝐴 ∪ 𝐶 ) ∈ V ) | |
| 5 | 1 4 | mpan2 | ⊢ ( 𝐴 ∈ 𝒫 𝐵 → ( 𝐴 ∪ 𝐶 ) ∈ V ) |
| 6 | elpwg | ⊢ ( ( 𝐴 ∪ 𝐶 ) ∈ V → ( ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ 𝒫 𝐵 → ( ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) ) ) |
| 8 | 3 7 | imbitrrid | ⊢ ( 𝐴 ∈ 𝒫 𝐵 → ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ) ) |
| 9 | 2 8 | mpd | ⊢ ( 𝐴 ∈ 𝒫 𝐵 → ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ) |
| 10 | elpwi | ⊢ ( ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 𝐵 → ( 𝐴 ∪ 𝐶 ) ⊆ 𝐵 ) | |
| 11 | 10 | unssbd | ⊢ ( ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 𝐵 → 𝐶 ⊆ 𝐵 ) |
| 12 | 11 | con3i | ⊢ ( ¬ 𝐶 ⊆ 𝐵 → ¬ ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 𝐵 ) |
| 13 | 9 12 | anim12i | ⊢ ( ( 𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵 ) → ( ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ∧ ¬ ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 𝐵 ) ) |
| 14 | eldif | ⊢ ( ( 𝐴 ∪ 𝐶 ) ∈ ( 𝒫 ( 𝐵 ∪ 𝐶 ) ∖ 𝒫 𝐵 ) ↔ ( ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ∧ ¬ ( 𝐴 ∪ 𝐶 ) ∈ 𝒫 𝐵 ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( ( 𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵 ) → ( 𝐴 ∪ 𝐶 ) ∈ ( 𝒫 ( 𝐵 ∪ 𝐶 ) ∖ 𝒫 𝐵 ) ) |