This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate. (Contributed by Peter Mazsa, 24-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcoeleqvrelsrel | |- ( A e. V -> ( A e. CoElEqvRels <-> CoElEqvRel A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcoeleqvrels | |- ( A e. V -> ( A e. CoElEqvRels <-> ,~ ( `' _E |` A ) e. EqvRels ) ) |
|
| 2 | 1cosscnvepresex | |- ( A e. V -> ,~ ( `' _E |` A ) e. _V ) |
|
| 3 | eleqvrelsrel | |- ( ,~ ( `' _E |` A ) e. _V -> ( ,~ ( `' _E |` A ) e. EqvRels <-> EqvRel ,~ ( `' _E |` A ) ) ) |
|
| 4 | 2 3 | syl | |- ( A e. V -> ( ,~ ( `' _E |` A ) e. EqvRels <-> EqvRel ,~ ( `' _E |` A ) ) ) |
| 5 | 1 4 | bitrd | |- ( A e. V -> ( A e. CoElEqvRels <-> EqvRel ,~ ( `' _E |` A ) ) ) |
| 6 | df-coeleqvrel | |- ( CoElEqvRel A <-> EqvRel ,~ ( `' _E |` A ) ) |
|
| 7 | 5 6 | bitr4di | |- ( A e. V -> ( A e. CoElEqvRels <-> CoElEqvRel A ) ) |