This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Members of a set with seven elements. Lemma for usgrexmpl2nb0 etc. (Contributed by AV, 9-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | el7g | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ ( { 𝐴 } ∪ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ) ↔ ( 𝑋 = 𝐴 ∨ ( ( 𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷 ) ∨ ( 𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun | ⊢ ( 𝑋 ∈ ( { 𝐴 } ∪ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ) ↔ ( 𝑋 ∈ { 𝐴 } ∨ 𝑋 ∈ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ) ) | |
| 2 | elsng | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ { 𝐴 } ↔ 𝑋 = 𝐴 ) ) | |
| 3 | elun | ⊢ ( 𝑋 ∈ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ↔ ( 𝑋 ∈ { 𝐵 , 𝐶 , 𝐷 } ∨ 𝑋 ∈ { 𝐸 , 𝐹 , 𝐺 } ) ) | |
| 4 | eltpg | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ ( 𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷 ) ) ) | |
| 5 | eltpg | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ { 𝐸 , 𝐹 , 𝐺 } ↔ ( 𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺 ) ) ) | |
| 6 | 4 5 | orbi12d | ⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑋 ∈ { 𝐵 , 𝐶 , 𝐷 } ∨ 𝑋 ∈ { 𝐸 , 𝐹 , 𝐺 } ) ↔ ( ( 𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷 ) ∨ ( 𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺 ) ) ) ) |
| 7 | 3 6 | bitrid | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ↔ ( ( 𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷 ) ∨ ( 𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺 ) ) ) ) |
| 8 | 2 7 | orbi12d | ⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑋 ∈ { 𝐴 } ∨ 𝑋 ∈ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ) ↔ ( 𝑋 = 𝐴 ∨ ( ( 𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷 ) ∨ ( 𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺 ) ) ) ) ) |
| 9 | 1 8 | bitrid | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ ( { 𝐴 } ∪ ( { 𝐵 , 𝐶 , 𝐷 } ∪ { 𝐸 , 𝐹 , 𝐺 } ) ) ↔ ( 𝑋 = 𝐴 ∨ ( ( 𝑋 = 𝐵 ∨ 𝑋 = 𝐶 ∨ 𝑋 = 𝐷 ) ∨ ( 𝑋 = 𝐸 ∨ 𝑋 = 𝐹 ∨ 𝑋 = 𝐺 ) ) ) ) ) |