This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union coset of A . (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecun | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ∪ 𝑆 ) = ( [ 𝐴 ] 𝑅 ∪ [ 𝐴 ] 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unab | ⊢ ( { 𝑥 ∣ 𝐴 𝑅 𝑥 } ∪ { 𝑥 ∣ 𝐴 𝑆 𝑥 } ) = { 𝑥 ∣ ( 𝐴 𝑅 𝑥 ∨ 𝐴 𝑆 𝑥 ) } | |
| 2 | 1 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝑥 ∣ 𝐴 𝑅 𝑥 } ∪ { 𝑥 ∣ 𝐴 𝑆 𝑥 } ) = { 𝑥 ∣ ( 𝐴 𝑅 𝑥 ∨ 𝐴 𝑆 𝑥 ) } ) |
| 3 | dfec2 | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] 𝑅 = { 𝑥 ∣ 𝐴 𝑅 𝑥 } ) | |
| 4 | dfec2 | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] 𝑆 = { 𝑥 ∣ 𝐴 𝑆 𝑥 } ) | |
| 5 | 3 4 | uneq12d | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 ] 𝑅 ∪ [ 𝐴 ] 𝑆 ) = ( { 𝑥 ∣ 𝐴 𝑅 𝑥 } ∪ { 𝑥 ∣ 𝐴 𝑆 𝑥 } ) ) |
| 6 | elecALTV | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ [ 𝐴 ] ( 𝑅 ∪ 𝑆 ) ↔ 𝐴 ( 𝑅 ∪ 𝑆 ) 𝑥 ) ) | |
| 7 | 6 | elvd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ [ 𝐴 ] ( 𝑅 ∪ 𝑆 ) ↔ 𝐴 ( 𝑅 ∪ 𝑆 ) 𝑥 ) ) |
| 8 | brun | ⊢ ( 𝐴 ( 𝑅 ∪ 𝑆 ) 𝑥 ↔ ( 𝐴 𝑅 𝑥 ∨ 𝐴 𝑆 𝑥 ) ) | |
| 9 | 7 8 | bitrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ [ 𝐴 ] ( 𝑅 ∪ 𝑆 ) ↔ ( 𝐴 𝑅 𝑥 ∨ 𝐴 𝑆 𝑥 ) ) ) |
| 10 | 9 | eqabdv | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ∪ 𝑆 ) = { 𝑥 ∣ ( 𝐴 𝑅 𝑥 ∨ 𝐴 𝑆 𝑥 ) } ) |
| 11 | 2 5 10 | 3eqtr4rd | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ∪ 𝑆 ) = ( [ 𝐴 ] 𝑅 ∪ [ 𝐴 ] 𝑆 ) ) |