This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union coset of A . (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecun | |- ( A e. V -> [ A ] ( R u. S ) = ( [ A ] R u. [ A ] S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unab | |- ( { x | A R x } u. { x | A S x } ) = { x | ( A R x \/ A S x ) } |
|
| 2 | 1 | a1i | |- ( A e. V -> ( { x | A R x } u. { x | A S x } ) = { x | ( A R x \/ A S x ) } ) |
| 3 | dfec2 | |- ( A e. V -> [ A ] R = { x | A R x } ) |
|
| 4 | dfec2 | |- ( A e. V -> [ A ] S = { x | A S x } ) |
|
| 5 | 3 4 | uneq12d | |- ( A e. V -> ( [ A ] R u. [ A ] S ) = ( { x | A R x } u. { x | A S x } ) ) |
| 6 | elecALTV | |- ( ( A e. V /\ x e. _V ) -> ( x e. [ A ] ( R u. S ) <-> A ( R u. S ) x ) ) |
|
| 7 | 6 | elvd | |- ( A e. V -> ( x e. [ A ] ( R u. S ) <-> A ( R u. S ) x ) ) |
| 8 | brun | |- ( A ( R u. S ) x <-> ( A R x \/ A S x ) ) |
|
| 9 | 7 8 | bitrdi | |- ( A e. V -> ( x e. [ A ] ( R u. S ) <-> ( A R x \/ A S x ) ) ) |
| 10 | 9 | eqabdv | |- ( A e. V -> [ A ] ( R u. S ) = { x | ( A R x \/ A S x ) } ) |
| 11 | 2 5 10 | 3eqtr4rd | |- ( A e. V -> [ A ] ( R u. S ) = ( [ A ] R u. [ A ] S ) ) |