This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: R -coset of B in a quotient set, biconditional version. (Contributed by Peter Mazsa, 17-Apr-2019) (Revised by Peter Mazsa, 22-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecelqsdmb | ⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ dom 𝑅 = 𝐴 ) → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ↔ 𝐵 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecelqsdm | ⊢ ( ( dom 𝑅 = 𝐴 ∧ [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) → 𝐵 ∈ 𝐴 ) | |
| 2 | 1 | ex | ⊢ ( dom 𝑅 = 𝐴 → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) → 𝐵 ∈ 𝐴 ) ) |
| 3 | 2 | adantl | ⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ dom 𝑅 = 𝐴 ) → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) → 𝐵 ∈ 𝐴 ) ) |
| 4 | ecelqs | ⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) | |
| 5 | 4 | ex | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → ( 𝐵 ∈ 𝐴 → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ dom 𝑅 = 𝐴 ) → ( 𝐵 ∈ 𝐴 → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) ) |
| 7 | 3 6 | impbid | ⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ dom 𝑅 = 𝐴 ) → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ↔ 𝐵 ∈ 𝐴 ) ) |