This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: R -coset of B in a quotient set, biconditional version. (Contributed by Peter Mazsa, 17-Apr-2019) (Revised by Peter Mazsa, 22-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecelqsdmb | |- ( ( ( R |` A ) e. V /\ dom R = A ) -> ( [ B ] R e. ( A /. R ) <-> B e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecelqsdm | |- ( ( dom R = A /\ [ B ] R e. ( A /. R ) ) -> B e. A ) |
|
| 2 | 1 | ex | |- ( dom R = A -> ( [ B ] R e. ( A /. R ) -> B e. A ) ) |
| 3 | 2 | adantl | |- ( ( ( R |` A ) e. V /\ dom R = A ) -> ( [ B ] R e. ( A /. R ) -> B e. A ) ) |
| 4 | ecelqs | |- ( ( ( R |` A ) e. V /\ B e. A ) -> [ B ] R e. ( A /. R ) ) |
|
| 5 | 4 | ex | |- ( ( R |` A ) e. V -> ( B e. A -> [ B ] R e. ( A /. R ) ) ) |
| 6 | 5 | adantr | |- ( ( ( R |` A ) e. V /\ dom R = A ) -> ( B e. A -> [ B ] R e. ( A /. R ) ) ) |
| 7 | 3 6 | impbid | |- ( ( ( R |` A ) e. V /\ dom R = A ) -> ( [ B ] R e. ( A /. R ) <-> B e. A ) ) |