This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 22-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecelqs | |- ( ( ( R |` A ) e. V /\ B e. A ) -> [ B ] R e. ( A /. R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- [ B ] R = [ B ] R |
|
| 2 | eceq1 | |- ( x = B -> [ x ] R = [ B ] R ) |
|
| 3 | 2 | rspceeqv | |- ( ( B e. A /\ [ B ] R = [ B ] R ) -> E. x e. A [ B ] R = [ x ] R ) |
| 4 | 1 3 | mpan2 | |- ( B e. A -> E. x e. A [ B ] R = [ x ] R ) |
| 5 | 4 | adantl | |- ( ( ( R |` A ) e. V /\ B e. A ) -> E. x e. A [ B ] R = [ x ] R ) |
| 6 | elecex | |- ( ( R |` A ) e. V -> ( B e. A -> [ B ] R e. _V ) ) |
|
| 7 | 6 | imp | |- ( ( ( R |` A ) e. V /\ B e. A ) -> [ B ] R e. _V ) |
| 8 | elqsg | |- ( [ B ] R e. _V -> ( [ B ] R e. ( A /. R ) <-> E. x e. A [ B ] R = [ x ] R ) ) |
|
| 9 | 7 8 | syl | |- ( ( ( R |` A ) e. V /\ B e. A ) -> ( [ B ] R e. ( A /. R ) <-> E. x e. A [ B ] R = [ x ] R ) ) |
| 10 | 5 9 | mpbird | |- ( ( ( R |` A ) e. V /\ B e. A ) -> [ B ] R e. ( A /. R ) ) |