This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ( R |X. (`' _E |`A ) ) -coset in its domain quotient. (Contributed by Peter Mazsa, 23-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eceldmqsxrncnvepres | |- ( ( A e. V /\ B e. W /\ R e. X ) -> ( [ B ] ( R |X. ( `' _E |` A ) ) e. ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) <-> ( B e. A /\ B =/= (/) /\ [ B ] R =/= (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrncnvepresex | |- ( ( A e. V /\ R e. X ) -> ( R |X. ( `' _E |` A ) ) e. _V ) |
|
| 2 | eceldmqs | |- ( ( R |X. ( `' _E |` A ) ) e. _V -> ( [ B ] ( R |X. ( `' _E |` A ) ) e. ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) <-> B e. dom ( R |X. ( `' _E |` A ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( ( A e. V /\ R e. X ) -> ( [ B ] ( R |X. ( `' _E |` A ) ) e. ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) <-> B e. dom ( R |X. ( `' _E |` A ) ) ) ) |
| 4 | 3 | 3adant2 | |- ( ( A e. V /\ B e. W /\ R e. X ) -> ( [ B ] ( R |X. ( `' _E |` A ) ) e. ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) <-> B e. dom ( R |X. ( `' _E |` A ) ) ) ) |
| 5 | eldmxrncnvepres | |- ( B e. W -> ( B e. dom ( R |X. ( `' _E |` A ) ) <-> ( B e. A /\ B =/= (/) /\ [ B ] R =/= (/) ) ) ) |
|
| 6 | 5 | 3ad2ant2 | |- ( ( A e. V /\ B e. W /\ R e. X ) -> ( B e. dom ( R |X. ( `' _E |` A ) ) <-> ( B e. A /\ B =/= (/) /\ [ B ] R =/= (/) ) ) ) |
| 7 | 4 6 | bitrd | |- ( ( A e. V /\ B e. W /\ R e. X ) -> ( [ B ] ( R |X. ( `' _E |` A ) ) e. ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) <-> ( B e. A /\ B =/= (/) /\ [ B ] R =/= (/) ) ) ) |