This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dvr | ⊢ /r = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdvr | ⊢ /r | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cvv | ⊢ V | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑟 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑟 ) |
| 7 | vy | ⊢ 𝑦 | |
| 8 | cui | ⊢ Unit | |
| 9 | 5 8 | cfv | ⊢ ( Unit ‘ 𝑟 ) |
| 10 | 3 | cv | ⊢ 𝑥 |
| 11 | cmulr | ⊢ .r | |
| 12 | 5 11 | cfv | ⊢ ( .r ‘ 𝑟 ) |
| 13 | cinvr | ⊢ invr | |
| 14 | 5 13 | cfv | ⊢ ( invr ‘ 𝑟 ) |
| 15 | 7 | cv | ⊢ 𝑦 |
| 16 | 15 14 | cfv | ⊢ ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) |
| 17 | 10 16 12 | co | ⊢ ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) |
| 18 | 3 7 6 9 17 | cmpo | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) ) |
| 19 | 1 2 18 | cmpt | ⊢ ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) ) ) |
| 20 | 0 19 | wceq | ⊢ /r = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) ) ) |