This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of dvelimv without any variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 1-Oct-2002) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 11-May-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvelimf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| dvelimf.2 | ⊢ Ⅎ 𝑧 𝜓 | ||
| dvelimf.3 | ⊢ ( 𝑧 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | dvelimf | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | dvelimf.2 | ⊢ Ⅎ 𝑧 𝜓 | |
| 3 | dvelimf.3 | ⊢ ( 𝑧 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 2 3 | equsal | ⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ↔ 𝜓 ) |
| 5 | 4 | bicomi | ⊢ ( 𝜓 ↔ ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) |
| 6 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 7 | nfeqf | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑧 = 𝑦 ) | |
| 8 | 7 | ancoms | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 = 𝑦 ) |
| 9 | 1 | a1i | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝜑 ) |
| 10 | 8 9 | nfimd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑧 = 𝑦 → 𝜑 ) ) |
| 11 | 6 10 | nfald2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) |
| 12 | 5 11 | nfxfrd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜓 ) |