This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of dvelimv without any variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 1-Oct-2002) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 11-May-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvelimf.1 | |- F/ x ph |
|
| dvelimf.2 | |- F/ z ps |
||
| dvelimf.3 | |- ( z = y -> ( ph <-> ps ) ) |
||
| Assertion | dvelimf | |- ( -. A. x x = y -> F/ x ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimf.1 | |- F/ x ph |
|
| 2 | dvelimf.2 | |- F/ z ps |
|
| 3 | dvelimf.3 | |- ( z = y -> ( ph <-> ps ) ) |
|
| 4 | 2 3 | equsal | |- ( A. z ( z = y -> ph ) <-> ps ) |
| 5 | 4 | bicomi | |- ( ps <-> A. z ( z = y -> ph ) ) |
| 6 | nfnae | |- F/ z -. A. x x = y |
|
| 7 | nfeqf | |- ( ( -. A. x x = z /\ -. A. x x = y ) -> F/ x z = y ) |
|
| 8 | 7 | ancoms | |- ( ( -. A. x x = y /\ -. A. x x = z ) -> F/ x z = y ) |
| 9 | 1 | a1i | |- ( ( -. A. x x = y /\ -. A. x x = z ) -> F/ x ph ) |
| 10 | 8 9 | nfimd | |- ( ( -. A. x x = y /\ -. A. x x = z ) -> F/ x ( z = y -> ph ) ) |
| 11 | 6 10 | nfald2 | |- ( -. A. x x = y -> F/ x A. z ( z = y -> ph ) ) |
| 12 | 5 11 | nfxfrd | |- ( -. A. x x = y -> F/ x ps ) |