This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variable is effectively not free in an equality if it is not either of the involved variables. F/ version of ax-c9 . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 6-Oct-2016) Remove dependency on ax-11 . (Revised by Wolf Lammen, 6-Sep-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nfeqf | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 𝑥 = 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfna1 | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑥 | |
| 2 | nfna1 | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑦 | |
| 3 | 1 2 | nfan | ⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) |
| 4 | equvinva | ⊢ ( 𝑥 = 𝑦 → ∃ 𝑤 ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑤 ) ) | |
| 5 | dveeq1 | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( 𝑥 = 𝑤 → ∀ 𝑧 𝑥 = 𝑤 ) ) | |
| 6 | 5 | imp | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ 𝑥 = 𝑤 ) → ∀ 𝑧 𝑥 = 𝑤 ) |
| 7 | dveeq1 | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑦 = 𝑤 → ∀ 𝑧 𝑦 = 𝑤 ) ) | |
| 8 | 7 | imp | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ 𝑦 = 𝑤 ) → ∀ 𝑧 𝑦 = 𝑤 ) |
| 9 | equtr2 | ⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑤 ) → 𝑥 = 𝑦 ) | |
| 10 | 9 | alanimi | ⊢ ( ( ∀ 𝑧 𝑥 = 𝑤 ∧ ∀ 𝑧 𝑦 = 𝑤 ) → ∀ 𝑧 𝑥 = 𝑦 ) |
| 11 | 6 8 10 | syl2an | ⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑧 𝑥 = 𝑦 ) |
| 12 | 11 | an4s | ⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) ∧ ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑧 𝑥 = 𝑦 ) |
| 13 | 12 | ex | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑤 ) → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 14 | 13 | exlimdv | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∃ 𝑤 ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑤 ) → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 15 | 4 14 | syl5 | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 16 | 3 15 | nf5d | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 𝑥 = 𝑦 ) |