This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvbdfbdioo.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| dvbdfbdioo.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| dvbdfbdioo.altb | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| dvbdfbdioo.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | ||
| dvbdfbdioo.dmdv | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| dvbdfbdioo.dvbd | ⊢ ( 𝜑 → ∃ 𝑎 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) | ||
| Assertion | dvbdfbdioo | ⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvbdfbdioo.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | dvbdfbdioo.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | dvbdfbdioo.altb | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 4 | dvbdfbdioo.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | |
| 5 | dvbdfbdioo.dmdv | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 6 | dvbdfbdioo.dvbd | ⊢ ( 𝜑 → ∃ 𝑎 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) | |
| 7 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 8 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 9 | 1 2 | readdcld | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 10 | 9 | rehalfcld | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ) |
| 11 | avglt1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) | |
| 12 | 1 2 11 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |
| 13 | 3 12 | mpbid | ⊢ ( 𝜑 → 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) |
| 14 | avglt2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) ) | |
| 15 | 1 2 14 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) ) |
| 16 | 3 15 | mpbid | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) |
| 17 | 7 8 10 13 16 | eliood | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ( 𝐴 (,) 𝐵 ) ) |
| 18 | 4 17 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ∈ ℝ ) |
| 19 | 18 | recnd | ⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ∈ ℂ ) |
| 20 | 19 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ∈ ℝ ) |
| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ∈ ℝ ) |
| 22 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → 𝑎 ∈ ℝ ) | |
| 23 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → 𝐵 ∈ ℝ ) |
| 24 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → 𝐴 ∈ ℝ ) |
| 25 | 23 24 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 26 | 22 25 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ( 𝑎 · ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
| 27 | 21 26 | readdcld | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) ∈ ℝ ) |
| 28 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → 𝐴 < 𝐵 ) |
| 29 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 30 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 31 | 2fveq3 | ⊢ ( 𝑥 = 𝑦 → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) | |
| 32 | 31 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ↔ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ≤ 𝑎 ) ) |
| 33 | 32 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ↔ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ≤ 𝑎 ) |
| 34 | 33 | biimpi | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ≤ 𝑎 ) |
| 35 | 34 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ≤ 𝑎 ) |
| 36 | eqid | ⊢ ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) | |
| 37 | 24 23 28 29 30 22 35 36 | dvbdfbdioolem2 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) ) |
| 38 | 2fveq3 | ⊢ ( 𝑥 = 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 39 | 38 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑏 ) ) |
| 40 | 39 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑏 ) |
| 41 | breq2 | ⊢ ( 𝑏 = ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) ) ) | |
| 42 | 41 | ralbidv | ⊢ ( 𝑏 = ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) → ( ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑏 ↔ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) ) ) |
| 43 | 40 42 | bitrid | ⊢ ( 𝑏 = ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) → ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) ) ) |
| 44 | 43 | rspcev | ⊢ ( ( ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) ∈ ℝ ∧ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
| 45 | 27 37 44 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
| 46 | 45 6 | r19.29a | ⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |