This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the multiplicative inverse in a division ring. ( reccld analog). (Contributed by SN, 14-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drnginvrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| drnginvrcl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| drnginvrcl.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| drnginvrcld.r | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | ||
| drnginvrcld.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| drnginvrcld.1 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | ||
| Assertion | drnginvrcld | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drnginvrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | drnginvrcl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | drnginvrcl.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 4 | drnginvrcld.r | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | |
| 5 | drnginvrcld.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | drnginvrcld.1 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | |
| 7 | 1 2 3 | drnginvrcl | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |