This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmiun | ⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ) | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 2 | eldm2 | ⊢ ( 𝑦 ∈ dom 𝐵 ↔ ∃ 𝑧 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ) |
| 4 | 3 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ) |
| 5 | eliun | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ) | |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑧 〈 𝑦 , 𝑧 〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ) |
| 7 | 1 4 6 | 3bitr4ri | ⊢ ( ∃ 𝑧 〈 𝑦 , 𝑧 〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵 ) |
| 8 | 2 | eldm2 | ⊢ ( 𝑦 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑧 〈 𝑦 , 𝑧 〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 9 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵 ) | |
| 10 | 7 8 9 | 3bitr4i | ⊢ ( 𝑦 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝐵 ) |
| 11 | 10 | eqriv | ⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 |