This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010) (Proof shortened by BJ, 26-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmep | ⊢ dom E = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqv | ⊢ ( dom E = V ↔ ∀ 𝑥 𝑥 ∈ dom E ) | |
| 2 | el | ⊢ ∃ 𝑦 𝑥 ∈ 𝑦 | |
| 3 | epel | ⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) | |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑦 𝑥 E 𝑦 ↔ ∃ 𝑦 𝑥 ∈ 𝑦 ) |
| 5 | 2 4 | mpbir | ⊢ ∃ 𝑦 𝑥 E 𝑦 |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 6 | eldm | ⊢ ( 𝑥 ∈ dom E ↔ ∃ 𝑦 𝑥 E 𝑦 ) |
| 8 | 5 7 | mpbir | ⊢ 𝑥 ∈ dom E |
| 9 | 1 8 | mpgbir | ⊢ dom E = V |