This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dmep
Metamath Proof Explorer
Description: The domain of the membership relation is the universal class.
(Contributed by Scott Fenton , 27-Oct-2010) (Proof shortened by BJ , 26-Dec-2023)
Ref
Expression
Assertion
dmep
⊢ dom ⁡ E = V
Proof
Step
Hyp
Ref
Expression
1
eqv
⊢ dom ⁡ E = V ↔ ∀ x x ∈ dom ⁡ E
2
el
⊢ ∃ y x ∈ y
3
epel
⊢ x E y ↔ x ∈ y
4
3
exbii
⊢ ∃ y x E y ↔ ∃ y x ∈ y
5
2 4
mpbir
⊢ ∃ y x E y
6
vex
⊢ x ∈ V
7
6
eldm
⊢ x ∈ dom ⁡ E ↔ ∃ y x E y
8
5 7
mpbir
⊢ x ∈ dom ⁡ E
9
1 8
mpgbir
⊢ dom ⁡ E = V