This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjxrnres5 | ⊢ ( Disj ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝑣 ] ( 𝑅 ⋉ 𝑆 ) ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnres2 | ⊢ ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) = ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) | |
| 2 | 1 | disjeqi | ⊢ ( Disj ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) ↔ Disj ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) ) |
| 3 | xrnrel | ⊢ Rel ( 𝑅 ⋉ 𝑆 ) | |
| 4 | disjres | ⊢ ( Rel ( 𝑅 ⋉ 𝑆 ) → ( Disj ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝑣 ] ( 𝑅 ⋉ 𝑆 ) ) = ∅ ) ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( Disj ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝑣 ] ( 𝑅 ⋉ 𝑆 ) ) = ∅ ) ) |
| 6 | 2 5 | bitr3i | ⊢ ( Disj ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝑣 ] ( 𝑅 ⋉ 𝑆 ) ) = ∅ ) ) |