This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjxrnres5 | |- ( Disj ( R |X. ( S |` A ) ) <-> A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. S ) i^i [ v ] ( R |X. S ) ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnres2 | |- ( ( R |X. S ) |` A ) = ( R |X. ( S |` A ) ) |
|
| 2 | 1 | disjeqi | |- ( Disj ( ( R |X. S ) |` A ) <-> Disj ( R |X. ( S |` A ) ) ) |
| 3 | xrnrel | |- Rel ( R |X. S ) |
|
| 4 | disjres | |- ( Rel ( R |X. S ) -> ( Disj ( ( R |X. S ) |` A ) <-> A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. S ) i^i [ v ] ( R |X. S ) ) = (/) ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( Disj ( ( R |X. S ) |` A ) <-> A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. S ) i^i [ v ] ( R |X. S ) ) = (/) ) ) |
| 6 | 2 5 | bitr3i | |- ( Disj ( R |X. ( S |` A ) ) <-> A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. S ) i^i [ v ] ( R |X. S ) ) = (/) ) ) |