This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difprsn1 | |- ( A =/= B -> ( { A , B } \ { A } ) = { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necom | |- ( B =/= A <-> A =/= B ) |
|
| 2 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 3 | 2 | equncomi | |- { A , B } = ( { B } u. { A } ) |
| 4 | 3 | difeq1i | |- ( { A , B } \ { A } ) = ( ( { B } u. { A } ) \ { A } ) |
| 5 | difun2 | |- ( ( { B } u. { A } ) \ { A } ) = ( { B } \ { A } ) |
|
| 6 | 4 5 | eqtri | |- ( { A , B } \ { A } ) = ( { B } \ { A } ) |
| 7 | disjsn2 | |- ( B =/= A -> ( { B } i^i { A } ) = (/) ) |
|
| 8 | disj3 | |- ( ( { B } i^i { A } ) = (/) <-> { B } = ( { B } \ { A } ) ) |
|
| 9 | 7 8 | sylib | |- ( B =/= A -> { B } = ( { B } \ { A } ) ) |
| 10 | 6 9 | eqtr4id | |- ( B =/= A -> ( { A , B } \ { A } ) = { B } ) |
| 11 | 1 10 | sylbir | |- ( A =/= B -> ( { A , B } \ { A } ) = { B } ) |