This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Soundness justification theorem for df-dif . (Contributed by Rodolfo Medina, 27-Apr-2010) (Proof shortened by Andrew Salmon, 9-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difjust | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 2 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) | |
| 3 | 2 | notbid | ⊢ ( 𝑥 = 𝑧 → ( ¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑧 ∈ 𝐵 ) ) |
| 4 | 1 3 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵 ) ) ) |
| 5 | 4 | cbvabv | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) } = { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵 ) } |
| 6 | eleq1w | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 7 | eleq1w | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 8 | 7 | notbid | ⊢ ( 𝑧 = 𝑦 → ( ¬ 𝑧 ∈ 𝐵 ↔ ¬ 𝑦 ∈ 𝐵 ) ) |
| 9 | 6 8 | anbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
| 10 | 9 | cbvabv | ⊢ { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) } |
| 11 | 5 10 | eqtri | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) } |