This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection defined in terms of union (De Morgan's law). Similar to Exercise 4.10(n) of Mendelson p. 231. (Contributed by NM, 8-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfin3 | ⊢ ( 𝐴 ∩ 𝐵 ) = ( V ∖ ( ( V ∖ 𝐴 ) ∪ ( V ∖ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ddif | ⊢ ( V ∖ ( V ∖ ( 𝐴 ∖ ( V ∖ 𝐵 ) ) ) ) = ( 𝐴 ∖ ( V ∖ 𝐵 ) ) | |
| 2 | dfun2 | ⊢ ( ( V ∖ 𝐴 ) ∪ ( V ∖ 𝐵 ) ) = ( V ∖ ( ( V ∖ ( V ∖ 𝐴 ) ) ∖ ( V ∖ 𝐵 ) ) ) | |
| 3 | ddif | ⊢ ( V ∖ ( V ∖ 𝐴 ) ) = 𝐴 | |
| 4 | 3 | difeq1i | ⊢ ( ( V ∖ ( V ∖ 𝐴 ) ) ∖ ( V ∖ 𝐵 ) ) = ( 𝐴 ∖ ( V ∖ 𝐵 ) ) |
| 5 | 4 | difeq2i | ⊢ ( V ∖ ( ( V ∖ ( V ∖ 𝐴 ) ) ∖ ( V ∖ 𝐵 ) ) ) = ( V ∖ ( 𝐴 ∖ ( V ∖ 𝐵 ) ) ) |
| 6 | 2 5 | eqtri | ⊢ ( ( V ∖ 𝐴 ) ∪ ( V ∖ 𝐵 ) ) = ( V ∖ ( 𝐴 ∖ ( V ∖ 𝐵 ) ) ) |
| 7 | 6 | difeq2i | ⊢ ( V ∖ ( ( V ∖ 𝐴 ) ∪ ( V ∖ 𝐵 ) ) ) = ( V ∖ ( V ∖ ( 𝐴 ∖ ( V ∖ 𝐵 ) ) ) ) |
| 8 | dfin2 | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∖ ( V ∖ 𝐵 ) ) | |
| 9 | 1 7 8 | 3eqtr4ri | ⊢ ( 𝐴 ∩ 𝐵 ) = ( V ∖ ( ( V ∖ 𝐴 ) ∪ ( V ∖ 𝐵 ) ) ) |