This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a 3-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfvd3 | ⊢ ( ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vd3 | ⊢ ( ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ) | |
| 2 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
| 3 | 2 | imbi1i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) ) |
| 4 | impexp | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝜃 ) ) ) | |
| 5 | 3 4 | bitri | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝜃 ) ) ) |
| 6 | impexp | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝜃 ) ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) | |
| 7 | 5 6 | bitri | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |
| 8 | 1 7 | bitri | ⊢ ( ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) |