This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a 3-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfvd3 | |- ( (. ph ,. ps ,. ch ->. th ). <-> ( ph -> ( ps -> ( ch -> th ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vd3 | |- ( (. ph ,. ps ,. ch ->. th ). <-> ( ( ph /\ ps /\ ch ) -> th ) ) |
|
| 2 | df-3an | |- ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) |
|
| 3 | 2 | imbi1i | |- ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ( ( ph /\ ps ) /\ ch ) -> th ) ) |
| 4 | impexp | |- ( ( ( ( ph /\ ps ) /\ ch ) -> th ) <-> ( ( ph /\ ps ) -> ( ch -> th ) ) ) |
|
| 5 | 3 4 | bitri | |- ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ( ph /\ ps ) -> ( ch -> th ) ) ) |
| 6 | impexp | |- ( ( ( ph /\ ps ) -> ( ch -> th ) ) <-> ( ph -> ( ps -> ( ch -> th ) ) ) ) |
|
| 7 | 5 6 | bitri | |- ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ph -> ( ps -> ( ch -> th ) ) ) ) |
| 8 | 1 7 | bitri | |- ( (. ph ,. ps ,. ch ->. th ). <-> ( ph -> ( ps -> ( ch -> th ) ) ) ) |