This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dftrrel2 | ⊢ ( TrRel 𝑅 ↔ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-trrel | ⊢ ( TrRel 𝑅 ↔ ( ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) ) | |
| 2 | dfrel6 | ⊢ ( Rel 𝑅 ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) | |
| 3 | 2 | biimpi | ⊢ ( Rel 𝑅 → ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) |
| 4 | 3 3 | coeq12d | ⊢ ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) = ( 𝑅 ∘ 𝑅 ) ) |
| 5 | 4 3 | sseq12d | ⊢ ( Rel 𝑅 → ( ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ↔ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ) |
| 6 | 5 | pm5.32ri | ⊢ ( ( ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) ↔ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) |
| 7 | 1 6 | bitri | ⊢ ( TrRel 𝑅 ↔ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) |