This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dftrrel2 | |- ( TrRel R <-> ( ( R o. R ) C_ R /\ Rel R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-trrel | |- ( TrRel R <-> ( ( ( R i^i ( dom R X. ran R ) ) o. ( R i^i ( dom R X. ran R ) ) ) C_ ( R i^i ( dom R X. ran R ) ) /\ Rel R ) ) |
|
| 2 | dfrel6 | |- ( Rel R <-> ( R i^i ( dom R X. ran R ) ) = R ) |
|
| 3 | 2 | biimpi | |- ( Rel R -> ( R i^i ( dom R X. ran R ) ) = R ) |
| 4 | 3 3 | coeq12d | |- ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) o. ( R i^i ( dom R X. ran R ) ) ) = ( R o. R ) ) |
| 5 | 4 3 | sseq12d | |- ( Rel R -> ( ( ( R i^i ( dom R X. ran R ) ) o. ( R i^i ( dom R X. ran R ) ) ) C_ ( R i^i ( dom R X. ran R ) ) <-> ( R o. R ) C_ R ) ) |
| 6 | 5 | pm5.32ri | |- ( ( ( ( R i^i ( dom R X. ran R ) ) o. ( R i^i ( dom R X. ran R ) ) ) C_ ( R i^i ( dom R X. ran R ) ) /\ Rel R ) <-> ( ( R o. R ) C_ R /\ Rel R ) ) |
| 7 | 1 6 | bitri | |- ( TrRel R <-> ( ( R o. R ) C_ R /\ Rel R ) ) |