This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of df-termo depending on df-inito , without dummy variables. (Contributed by Zhi Wang, 29-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dftermo3 | ⊢ TermO = ( InitO ∘ ( oppCat ↾ Cat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres | ⊢ ( 𝑐 ∈ Cat → ( ( oppCat ↾ Cat ) ‘ 𝑐 ) = ( oppCat ‘ 𝑐 ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝑐 ∈ Cat → ( InitO ‘ ( ( oppCat ↾ Cat ) ‘ 𝑐 ) ) = ( InitO ‘ ( oppCat ‘ 𝑐 ) ) ) |
| 3 | 2 | mpteq2ia | ⊢ ( 𝑐 ∈ Cat ↦ ( InitO ‘ ( ( oppCat ↾ Cat ) ‘ 𝑐 ) ) ) = ( 𝑐 ∈ Cat ↦ ( InitO ‘ ( oppCat ‘ 𝑐 ) ) ) |
| 4 | initofn | ⊢ InitO Fn Cat | |
| 5 | dffn2 | ⊢ ( InitO Fn Cat ↔ InitO : Cat ⟶ V ) | |
| 6 | 4 5 | mpbi | ⊢ InitO : Cat ⟶ V |
| 7 | oppccatf | ⊢ ( oppCat ↾ Cat ) : Cat ⟶ Cat | |
| 8 | fcompt | ⊢ ( ( InitO : Cat ⟶ V ∧ ( oppCat ↾ Cat ) : Cat ⟶ Cat ) → ( InitO ∘ ( oppCat ↾ Cat ) ) = ( 𝑐 ∈ Cat ↦ ( InitO ‘ ( ( oppCat ↾ Cat ) ‘ 𝑐 ) ) ) ) | |
| 9 | 6 7 8 | mp2an | ⊢ ( InitO ∘ ( oppCat ↾ Cat ) ) = ( 𝑐 ∈ Cat ↦ ( InitO ‘ ( ( oppCat ↾ Cat ) ‘ 𝑐 ) ) ) |
| 10 | dftermo2 | ⊢ TermO = ( 𝑐 ∈ Cat ↦ ( InitO ‘ ( oppCat ‘ 𝑐 ) ) ) | |
| 11 | 3 9 10 | 3eqtr4ri | ⊢ TermO = ( InitO ∘ ( oppCat ↾ Cat ) ) |