This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition that incorporates the most desirable properties of the successor class. (Contributed by Peter Mazsa, 30-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsuccl4 | ⊢ Suc = { 𝑛 ∣ ∃! 𝑚 ∈ 𝑛 ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsuccl3 | ⊢ Suc = { 𝑛 ∣ ∃! 𝑚 suc 𝑚 = 𝑛 } | |
| 2 | sucidg | ⊢ ( 𝑚 ∈ V → 𝑚 ∈ suc 𝑚 ) | |
| 3 | 2 | elv | ⊢ 𝑚 ∈ suc 𝑚 |
| 4 | eleq2 | ⊢ ( suc 𝑚 = 𝑛 → ( 𝑚 ∈ suc 𝑚 ↔ 𝑚 ∈ 𝑛 ) ) | |
| 5 | 3 4 | mpbii | ⊢ ( suc 𝑚 = 𝑛 → 𝑚 ∈ 𝑛 ) |
| 6 | sssucid | ⊢ 𝑚 ⊆ suc 𝑚 | |
| 7 | sseq2 | ⊢ ( suc 𝑚 = 𝑛 → ( 𝑚 ⊆ suc 𝑚 ↔ 𝑚 ⊆ 𝑛 ) ) | |
| 8 | 6 7 | mpbii | ⊢ ( suc 𝑚 = 𝑛 → 𝑚 ⊆ 𝑛 ) |
| 9 | 5 8 | jca | ⊢ ( suc 𝑚 = 𝑛 → ( 𝑚 ∈ 𝑛 ∧ 𝑚 ⊆ 𝑛 ) ) |
| 10 | 9 | pm4.71ri | ⊢ ( suc 𝑚 = 𝑛 ↔ ( ( 𝑚 ∈ 𝑛 ∧ 𝑚 ⊆ 𝑛 ) ∧ suc 𝑚 = 𝑛 ) ) |
| 11 | df-3an | ⊢ ( ( 𝑚 ∈ 𝑛 ∧ 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ↔ ( ( 𝑚 ∈ 𝑛 ∧ 𝑚 ⊆ 𝑛 ) ∧ suc 𝑚 = 𝑛 ) ) | |
| 12 | 3anass | ⊢ ( ( 𝑚 ∈ 𝑛 ∧ 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ↔ ( 𝑚 ∈ 𝑛 ∧ ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ) ) | |
| 13 | 10 11 12 | 3bitr2i | ⊢ ( suc 𝑚 = 𝑛 ↔ ( 𝑚 ∈ 𝑛 ∧ ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ) ) |
| 14 | 13 | eubii | ⊢ ( ∃! 𝑚 suc 𝑚 = 𝑛 ↔ ∃! 𝑚 ( 𝑚 ∈ 𝑛 ∧ ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ) ) |
| 15 | df-reu | ⊢ ( ∃! 𝑚 ∈ 𝑛 ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ↔ ∃! 𝑚 ( 𝑚 ∈ 𝑛 ∧ ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ) ) | |
| 16 | 14 15 | bitr4i | ⊢ ( ∃! 𝑚 suc 𝑚 = 𝑛 ↔ ∃! 𝑚 ∈ 𝑛 ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ) |
| 17 | 16 | abbii | ⊢ { 𝑛 ∣ ∃! 𝑚 suc 𝑚 = 𝑛 } = { 𝑛 ∣ ∃! 𝑚 ∈ 𝑛 ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) } |
| 18 | 1 17 | eqtri | ⊢ Suc = { 𝑛 ∣ ∃! 𝑚 ∈ 𝑛 ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) } |