This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition that incorporates the most desirable properties of the successor class. (Contributed by Peter Mazsa, 30-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsuccl4 | |- Suc = { n | E! m e. n ( m C_ n /\ suc m = n ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsuccl3 | |- Suc = { n | E! m suc m = n } |
|
| 2 | sucidg | |- ( m e. _V -> m e. suc m ) |
|
| 3 | 2 | elv | |- m e. suc m |
| 4 | eleq2 | |- ( suc m = n -> ( m e. suc m <-> m e. n ) ) |
|
| 5 | 3 4 | mpbii | |- ( suc m = n -> m e. n ) |
| 6 | sssucid | |- m C_ suc m |
|
| 7 | sseq2 | |- ( suc m = n -> ( m C_ suc m <-> m C_ n ) ) |
|
| 8 | 6 7 | mpbii | |- ( suc m = n -> m C_ n ) |
| 9 | 5 8 | jca | |- ( suc m = n -> ( m e. n /\ m C_ n ) ) |
| 10 | 9 | pm4.71ri | |- ( suc m = n <-> ( ( m e. n /\ m C_ n ) /\ suc m = n ) ) |
| 11 | df-3an | |- ( ( m e. n /\ m C_ n /\ suc m = n ) <-> ( ( m e. n /\ m C_ n ) /\ suc m = n ) ) |
|
| 12 | 3anass | |- ( ( m e. n /\ m C_ n /\ suc m = n ) <-> ( m e. n /\ ( m C_ n /\ suc m = n ) ) ) |
|
| 13 | 10 11 12 | 3bitr2i | |- ( suc m = n <-> ( m e. n /\ ( m C_ n /\ suc m = n ) ) ) |
| 14 | 13 | eubii | |- ( E! m suc m = n <-> E! m ( m e. n /\ ( m C_ n /\ suc m = n ) ) ) |
| 15 | df-reu | |- ( E! m e. n ( m C_ n /\ suc m = n ) <-> E! m ( m e. n /\ ( m C_ n /\ suc m = n ) ) ) |
|
| 16 | 14 15 | bitr4i | |- ( E! m suc m = n <-> E! m e. n ( m C_ n /\ suc m = n ) ) |
| 17 | 16 | abbii | |- { n | E! m suc m = n } = { n | E! m e. n ( m C_ n /\ suc m = n ) } |
| 18 | 1 17 | eqtri | |- Suc = { n | E! m e. n ( m C_ n /\ suc m = n ) } |