This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfrnf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| dfrnf.2 | ⊢ Ⅎ 𝑦 𝐴 | ||
| Assertion | dfrnf | ⊢ ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrnf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | dfrnf.2 | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | dfrn2 | ⊢ ran 𝐴 = { 𝑤 ∣ ∃ 𝑣 𝑣 𝐴 𝑤 } | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 𝑣 | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 𝑤 | |
| 6 | 4 1 5 | nfbr | ⊢ Ⅎ 𝑥 𝑣 𝐴 𝑤 |
| 7 | nfv | ⊢ Ⅎ 𝑣 𝑥 𝐴 𝑤 | |
| 8 | breq1 | ⊢ ( 𝑣 = 𝑥 → ( 𝑣 𝐴 𝑤 ↔ 𝑥 𝐴 𝑤 ) ) | |
| 9 | 6 7 8 | cbvexv1 | ⊢ ( ∃ 𝑣 𝑣 𝐴 𝑤 ↔ ∃ 𝑥 𝑥 𝐴 𝑤 ) |
| 10 | 9 | abbii | ⊢ { 𝑤 ∣ ∃ 𝑣 𝑣 𝐴 𝑤 } = { 𝑤 ∣ ∃ 𝑥 𝑥 𝐴 𝑤 } |
| 11 | nfcv | ⊢ Ⅎ 𝑦 𝑥 | |
| 12 | nfcv | ⊢ Ⅎ 𝑦 𝑤 | |
| 13 | 11 2 12 | nfbr | ⊢ Ⅎ 𝑦 𝑥 𝐴 𝑤 |
| 14 | 13 | nfex | ⊢ Ⅎ 𝑦 ∃ 𝑥 𝑥 𝐴 𝑤 |
| 15 | nfv | ⊢ Ⅎ 𝑤 ∃ 𝑥 𝑥 𝐴 𝑦 | |
| 16 | breq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 𝐴 𝑤 ↔ 𝑥 𝐴 𝑦 ) ) | |
| 17 | 16 | exbidv | ⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑥 𝑥 𝐴 𝑤 ↔ ∃ 𝑥 𝑥 𝐴 𝑦 ) ) |
| 18 | 14 15 17 | cbvabw | ⊢ { 𝑤 ∣ ∃ 𝑥 𝑥 𝐴 𝑤 } = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } |
| 19 | 3 10 18 | 3eqtri | ⊢ ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } |