This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfrnf.1 | |- F/_ x A |
|
| dfrnf.2 | |- F/_ y A |
||
| Assertion | dfrnf | |- ran A = { y | E. x x A y } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrnf.1 | |- F/_ x A |
|
| 2 | dfrnf.2 | |- F/_ y A |
|
| 3 | dfrn2 | |- ran A = { w | E. v v A w } |
|
| 4 | nfcv | |- F/_ x v |
|
| 5 | nfcv | |- F/_ x w |
|
| 6 | 4 1 5 | nfbr | |- F/ x v A w |
| 7 | nfv | |- F/ v x A w |
|
| 8 | breq1 | |- ( v = x -> ( v A w <-> x A w ) ) |
|
| 9 | 6 7 8 | cbvexv1 | |- ( E. v v A w <-> E. x x A w ) |
| 10 | 9 | abbii | |- { w | E. v v A w } = { w | E. x x A w } |
| 11 | nfcv | |- F/_ y x |
|
| 12 | nfcv | |- F/_ y w |
|
| 13 | 11 2 12 | nfbr | |- F/ y x A w |
| 14 | 13 | nfex | |- F/ y E. x x A w |
| 15 | nfv | |- F/ w E. x x A y |
|
| 16 | breq2 | |- ( w = y -> ( x A w <-> x A y ) ) |
|
| 17 | 16 | exbidv | |- ( w = y -> ( E. x x A w <-> E. x x A y ) ) |
| 18 | 14 15 17 | cbvabw | |- { w | E. x x A w } = { y | E. x x A y } |
| 19 | 3 10 18 | 3eqtri | |- ran A = { y | E. x x A y } |