This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the predecessor of the N set. The ` ``' SucMap ` is just the "PreMap"; we did not define it because we do not expect to use it extensively in future (cf. the comments of df-sucmap ). (Contributed by Peter Mazsa, 26-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfpre4 | ⊢ ( 𝑁 ∈ 𝑉 → pre 𝑁 = ( ℩ 𝑚 𝑚 ∈ [ 𝑁 ] ◡ SucMap ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pre | ⊢ pre 𝑁 = ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , dom SucMap , 𝑁 ) ) | |
| 2 | dfpred4 | ⊢ ( 𝑁 ∈ 𝑉 → Pred ( SucMap , dom SucMap , 𝑁 ) = [ 𝑁 ] ◡ ( SucMap ↾ dom SucMap ) ) | |
| 3 | relsucmap | ⊢ Rel SucMap | |
| 4 | dfrel5 | ⊢ ( Rel SucMap ↔ ( SucMap ↾ dom SucMap ) = SucMap ) | |
| 5 | 3 4 | mpbi | ⊢ ( SucMap ↾ dom SucMap ) = SucMap |
| 6 | 5 | cnveqi | ⊢ ◡ ( SucMap ↾ dom SucMap ) = ◡ SucMap |
| 7 | 6 | eceq2i | ⊢ [ 𝑁 ] ◡ ( SucMap ↾ dom SucMap ) = [ 𝑁 ] ◡ SucMap |
| 8 | 2 7 | eqtrdi | ⊢ ( 𝑁 ∈ 𝑉 → Pred ( SucMap , dom SucMap , 𝑁 ) = [ 𝑁 ] ◡ SucMap ) |
| 9 | 8 | eleq2d | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝑚 ∈ Pred ( SucMap , dom SucMap , 𝑁 ) ↔ 𝑚 ∈ [ 𝑁 ] ◡ SucMap ) ) |
| 10 | 9 | iotabidv | ⊢ ( 𝑁 ∈ 𝑉 → ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , dom SucMap , 𝑁 ) ) = ( ℩ 𝑚 𝑚 ∈ [ 𝑁 ] ◡ SucMap ) ) |
| 11 | 1 10 | eqtrid | ⊢ ( 𝑁 ∈ 𝑉 → pre 𝑁 = ( ℩ 𝑚 𝑚 ∈ [ 𝑁 ] ◡ SucMap ) ) |