This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the predecessor of the N set. The ` ``' SucMap ` is just the "PreMap"; we did not define it because we do not expect to use it extensively in future (cf. the comments of df-sucmap ). (Contributed by Peter Mazsa, 26-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfpre4 | |- ( N e. V -> pre N = ( iota m m e. [ N ] `' SucMap ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pre | |- pre N = ( iota m m e. Pred ( SucMap , dom SucMap , N ) ) |
|
| 2 | dfpred4 | |- ( N e. V -> Pred ( SucMap , dom SucMap , N ) = [ N ] `' ( SucMap |` dom SucMap ) ) |
|
| 3 | relsucmap | |- Rel SucMap |
|
| 4 | dfrel5 | |- ( Rel SucMap <-> ( SucMap |` dom SucMap ) = SucMap ) |
|
| 5 | 3 4 | mpbi | |- ( SucMap |` dom SucMap ) = SucMap |
| 6 | 5 | cnveqi | |- `' ( SucMap |` dom SucMap ) = `' SucMap |
| 7 | 6 | eceq2i | |- [ N ] `' ( SucMap |` dom SucMap ) = [ N ] `' SucMap |
| 8 | 2 7 | eqtrdi | |- ( N e. V -> Pred ( SucMap , dom SucMap , N ) = [ N ] `' SucMap ) |
| 9 | 8 | eleq2d | |- ( N e. V -> ( m e. Pred ( SucMap , dom SucMap , N ) <-> m e. [ N ] `' SucMap ) ) |
| 10 | 9 | iotabidv | |- ( N e. V -> ( iota m m e. Pred ( SucMap , dom SucMap , N ) ) = ( iota m m e. [ N ] `' SucMap ) ) |
| 11 | 1 10 | eqtrid | |- ( N e. V -> pre N = ( iota m m e. [ N ] `' SucMap ) ) |