This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the successor-predecessor. (Contributed by Peter Mazsa, 27-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfpre | ⊢ pre 𝑁 = ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pre | ⊢ pre 𝑁 = ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , dom SucMap , 𝑁 ) ) | |
| 2 | dmsucmap | ⊢ dom SucMap = V | |
| 3 | predeq2 | ⊢ ( dom SucMap = V → Pred ( SucMap , dom SucMap , 𝑁 ) = Pred ( SucMap , V , 𝑁 ) ) | |
| 4 | 2 3 | ax-mp | ⊢ Pred ( SucMap , dom SucMap , 𝑁 ) = Pred ( SucMap , V , 𝑁 ) |
| 5 | 4 | eleq2i | ⊢ ( 𝑚 ∈ Pred ( SucMap , dom SucMap , 𝑁 ) ↔ 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) ) |
| 6 | 5 | iotabii | ⊢ ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , dom SucMap , 𝑁 ) ) = ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) ) |
| 7 | 1 6 | eqtri | ⊢ pre 𝑁 = ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) ) |