This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the successor-predecessor. (Contributed by Peter Mazsa, 27-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfpre | |- pre N = ( iota m m e. Pred ( SucMap , _V , N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pre | |- pre N = ( iota m m e. Pred ( SucMap , dom SucMap , N ) ) |
|
| 2 | dmsucmap | |- dom SucMap = _V |
|
| 3 | predeq2 | |- ( dom SucMap = _V -> Pred ( SucMap , dom SucMap , N ) = Pred ( SucMap , _V , N ) ) |
|
| 4 | 2 3 | ax-mp | |- Pred ( SucMap , dom SucMap , N ) = Pred ( SucMap , _V , N ) |
| 5 | 4 | eleq2i | |- ( m e. Pred ( SucMap , dom SucMap , N ) <-> m e. Pred ( SucMap , _V , N ) ) |
| 6 | 5 | iotabii | |- ( iota m m e. Pred ( SucMap , dom SucMap , N ) ) = ( iota m m e. Pred ( SucMap , _V , N ) ) |
| 7 | 1 6 | eqtri | |- pre N = ( iota m m e. Pred ( SucMap , _V , N ) ) |