This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of the successor map is the universe. (Contributed by Peter Mazsa, 7-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmsucmap | ⊢ dom SucMap = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv | ⊢ dom SucMap ⊆ V | |
| 2 | sucexg | ⊢ ( 𝑚 ∈ V → suc 𝑚 ∈ V ) | |
| 3 | 2 | elv | ⊢ suc 𝑚 ∈ V |
| 4 | 3 | isseti | ⊢ ∃ 𝑛 𝑛 = suc 𝑚 |
| 5 | brsucmap | ⊢ ( ( 𝑚 ∈ V ∧ 𝑛 ∈ V ) → ( 𝑚 SucMap 𝑛 ↔ suc 𝑚 = 𝑛 ) ) | |
| 6 | 5 | el2v | ⊢ ( 𝑚 SucMap 𝑛 ↔ suc 𝑚 = 𝑛 ) |
| 7 | eqcom | ⊢ ( suc 𝑚 = 𝑛 ↔ 𝑛 = suc 𝑚 ) | |
| 8 | 6 7 | bitri | ⊢ ( 𝑚 SucMap 𝑛 ↔ 𝑛 = suc 𝑚 ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑛 𝑚 SucMap 𝑛 ↔ ∃ 𝑛 𝑛 = suc 𝑚 ) |
| 10 | 4 9 | mpbir | ⊢ ∃ 𝑛 𝑚 SucMap 𝑛 |
| 11 | 10 | rgenw | ⊢ ∀ 𝑚 ∈ V ∃ 𝑛 𝑚 SucMap 𝑛 |
| 12 | ssdmral | ⊢ ( V ⊆ dom SucMap ↔ ∀ 𝑚 ∈ V ∃ 𝑛 𝑚 SucMap 𝑛 ) | |
| 13 | 11 12 | mpbir | ⊢ V ⊆ dom SucMap |
| 14 | 1 13 | eqssi | ⊢ dom SucMap = V |