This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define double indexed union. (Contributed by FL, 6-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfiunv2 | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun | ⊢ ∪ 𝑦 ∈ 𝐵 𝐶 = { 𝑤 ∣ ∃ 𝑦 ∈ 𝐵 𝑤 ∈ 𝐶 } | |
| 2 | 1 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ∪ 𝑦 ∈ 𝐵 𝐶 = { 𝑤 ∣ ∃ 𝑦 ∈ 𝐵 𝑤 ∈ 𝐶 } ) |
| 3 | 2 | iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐴 { 𝑤 ∣ ∃ 𝑦 ∈ 𝐵 𝑤 ∈ 𝐶 } |
| 4 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑤 ∣ ∃ 𝑦 ∈ 𝐵 𝑤 ∈ 𝐶 } = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ { 𝑤 ∣ ∃ 𝑦 ∈ 𝐵 𝑤 ∈ 𝐶 } } | |
| 5 | vex | ⊢ 𝑧 ∈ V | |
| 6 | eleq1w | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝐶 ↔ 𝑧 ∈ 𝐶 ) ) | |
| 7 | 6 | rexbidv | ⊢ ( 𝑤 = 𝑧 → ( ∃ 𝑦 ∈ 𝐵 𝑤 ∈ 𝐶 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 ) ) |
| 8 | 5 7 | elab | ⊢ ( 𝑧 ∈ { 𝑤 ∣ ∃ 𝑦 ∈ 𝐵 𝑤 ∈ 𝐶 } ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 ) |
| 9 | 8 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ { 𝑤 ∣ ∃ 𝑦 ∈ 𝐵 𝑤 ∈ 𝐶 } ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 ) |
| 10 | 9 | abbii | ⊢ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ { 𝑤 ∣ ∃ 𝑦 ∈ 𝐵 𝑤 ∈ 𝐶 } } = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 } |
| 11 | 3 4 10 | 3eqtri | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 } |