This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the conditional operator for propositions. The value of if- ( ph , ps , ch ) is "if ph then ps , and if not ph then ch ". This is the definition used in Section II.24 of Church p. 129 (Definition D12 page 132) (see comment of df-ifp ). (Contributed by BJ, 22-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfifp2 | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ifp | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) | |
| 2 | cases2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) | |
| 3 | 1 2 | bitri | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) |