This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Case disjunction according to the value of ph . (Contributed by BJ, 6-Apr-2019) (Proof shortened by Wolf Lammen, 28-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cases2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.83 | ⊢ ( ( ( 𝜑 → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ∧ ( ¬ 𝜑 → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) | |
| 2 | dedlema | ⊢ ( 𝜑 → ( 𝜓 ↔ ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) | |
| 3 | 2 | pm5.74i | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) |
| 4 | dedlemb | ⊢ ( ¬ 𝜑 → ( 𝜒 ↔ ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) | |
| 5 | 4 | pm5.74i | ⊢ ( ( ¬ 𝜑 → 𝜒 ) ↔ ( ¬ 𝜑 → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) |
| 6 | 3 5 | anbi12i | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ↔ ( ( 𝜑 → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ∧ ( ¬ 𝜑 → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) ) |
| 7 | ancom | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜓 ∧ 𝜑 ) ) | |
| 8 | ancom | ⊢ ( ( ¬ 𝜑 ∧ 𝜒 ) ↔ ( 𝜒 ∧ ¬ 𝜑 ) ) | |
| 9 | 7 8 | orbi12i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) |
| 10 | 1 6 9 | 3bitr4ri | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) |