This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a function. (Contributed by NM, 28-Mar-2007) (Revised by NM, 16-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffun9 | |- ( Fun A <-> ( Rel A /\ A. x e. dom A E* y e. ran A x A y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun7 | |- ( Fun A <-> ( Rel A /\ A. x e. dom A E* y x A y ) ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | vex | |- y e. _V |
|
| 4 | 2 3 | brelrn | |- ( x A y -> y e. ran A ) |
| 5 | 4 | pm4.71ri | |- ( x A y <-> ( y e. ran A /\ x A y ) ) |
| 6 | 5 | mobii | |- ( E* y x A y <-> E* y ( y e. ran A /\ x A y ) ) |
| 7 | df-rmo | |- ( E* y e. ran A x A y <-> E* y ( y e. ran A /\ x A y ) ) |
|
| 8 | 6 7 | bitr4i | |- ( E* y x A y <-> E* y e. ran A x A y ) |
| 9 | 8 | ralbii | |- ( A. x e. dom A E* y x A y <-> A. x e. dom A E* y e. ran A x A y ) |
| 10 | 9 | anbi2i | |- ( ( Rel A /\ A. x e. dom A E* y x A y ) <-> ( Rel A /\ A. x e. dom A E* y e. ran A x A y ) ) |
| 11 | 1 10 | bitri | |- ( Fun A <-> ( Rel A /\ A. x e. dom A E* y e. ran A x A y ) ) |