This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffix2 | ⊢ Fix 𝐴 = ran ( 𝐴 ∩ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | 1 | elfix | ⊢ ( 𝑥 ∈ Fix 𝐴 ↔ 𝑥 𝐴 𝑥 ) |
| 3 | 1 | elrn | ⊢ ( 𝑥 ∈ ran ( 𝐴 ∩ I ) ↔ ∃ 𝑦 𝑦 ( 𝐴 ∩ I ) 𝑥 ) |
| 4 | brin | ⊢ ( 𝑦 ( 𝐴 ∩ I ) 𝑥 ↔ ( 𝑦 𝐴 𝑥 ∧ 𝑦 I 𝑥 ) ) | |
| 5 | ancom | ⊢ ( ( 𝑦 𝐴 𝑥 ∧ 𝑦 I 𝑥 ) ↔ ( 𝑦 I 𝑥 ∧ 𝑦 𝐴 𝑥 ) ) | |
| 6 | 1 | ideq | ⊢ ( 𝑦 I 𝑥 ↔ 𝑦 = 𝑥 ) |
| 7 | 6 | anbi1i | ⊢ ( ( 𝑦 I 𝑥 ∧ 𝑦 𝐴 𝑥 ) ↔ ( 𝑦 = 𝑥 ∧ 𝑦 𝐴 𝑥 ) ) |
| 8 | 4 5 7 | 3bitri | ⊢ ( 𝑦 ( 𝐴 ∩ I ) 𝑥 ↔ ( 𝑦 = 𝑥 ∧ 𝑦 𝐴 𝑥 ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑦 𝑦 ( 𝐴 ∩ I ) 𝑥 ↔ ∃ 𝑦 ( 𝑦 = 𝑥 ∧ 𝑦 𝐴 𝑥 ) ) |
| 10 | breq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝐴 𝑥 ↔ 𝑥 𝐴 𝑥 ) ) | |
| 11 | 10 | equsexvw | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝑥 ∧ 𝑦 𝐴 𝑥 ) ↔ 𝑥 𝐴 𝑥 ) |
| 12 | 3 9 11 | 3bitri | ⊢ ( 𝑥 ∈ ran ( 𝐴 ∩ I ) ↔ 𝑥 𝐴 𝑥 ) |
| 13 | 2 12 | bitr4i | ⊢ ( 𝑥 ∈ Fix 𝐴 ↔ 𝑥 ∈ ran ( 𝐴 ∩ I ) ) |
| 14 | 13 | eqriv | ⊢ Fix 𝐴 = ran ( 𝐴 ∩ I ) |