This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffix2 | |- Fix A = ran ( A i^i _I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | 1 | elfix | |- ( x e. Fix A <-> x A x ) |
| 3 | 1 | elrn | |- ( x e. ran ( A i^i _I ) <-> E. y y ( A i^i _I ) x ) |
| 4 | brin | |- ( y ( A i^i _I ) x <-> ( y A x /\ y _I x ) ) |
|
| 5 | ancom | |- ( ( y A x /\ y _I x ) <-> ( y _I x /\ y A x ) ) |
|
| 6 | 1 | ideq | |- ( y _I x <-> y = x ) |
| 7 | 6 | anbi1i | |- ( ( y _I x /\ y A x ) <-> ( y = x /\ y A x ) ) |
| 8 | 4 5 7 | 3bitri | |- ( y ( A i^i _I ) x <-> ( y = x /\ y A x ) ) |
| 9 | 8 | exbii | |- ( E. y y ( A i^i _I ) x <-> E. y ( y = x /\ y A x ) ) |
| 10 | breq1 | |- ( y = x -> ( y A x <-> x A x ) ) |
|
| 11 | 10 | equsexvw | |- ( E. y ( y = x /\ y A x ) <-> x A x ) |
| 12 | 3 9 11 | 3bitri | |- ( x e. ran ( A i^i _I ) <-> x A x ) |
| 13 | 2 12 | bitr4i | |- ( x e. Fix A <-> x e. ran ( A i^i _I ) ) |
| 14 | 13 | eqriv | |- Fix A = ran ( A i^i _I ) |