This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of Monk1 p. 43. (Contributed by NM, 31-Jul-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dff13f.1 | |- F/_ x F |
|
| dff13f.2 | |- F/_ y F |
||
| Assertion | dff13f | |- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13f.1 | |- F/_ x F |
|
| 2 | dff13f.2 | |- F/_ y F |
|
| 3 | dff13 | |- ( F : A -1-1-> B <-> ( F : A --> B /\ A. w e. A A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) ) ) |
|
| 4 | nfcv | |- F/_ y w |
|
| 5 | 2 4 | nffv | |- F/_ y ( F ` w ) |
| 6 | nfcv | |- F/_ y v |
|
| 7 | 2 6 | nffv | |- F/_ y ( F ` v ) |
| 8 | 5 7 | nfeq | |- F/ y ( F ` w ) = ( F ` v ) |
| 9 | nfv | |- F/ y w = v |
|
| 10 | 8 9 | nfim | |- F/ y ( ( F ` w ) = ( F ` v ) -> w = v ) |
| 11 | nfv | |- F/ v ( ( F ` w ) = ( F ` y ) -> w = y ) |
|
| 12 | fveq2 | |- ( v = y -> ( F ` v ) = ( F ` y ) ) |
|
| 13 | 12 | eqeq2d | |- ( v = y -> ( ( F ` w ) = ( F ` v ) <-> ( F ` w ) = ( F ` y ) ) ) |
| 14 | equequ2 | |- ( v = y -> ( w = v <-> w = y ) ) |
|
| 15 | 13 14 | imbi12d | |- ( v = y -> ( ( ( F ` w ) = ( F ` v ) -> w = v ) <-> ( ( F ` w ) = ( F ` y ) -> w = y ) ) ) |
| 16 | 10 11 15 | cbvralw | |- ( A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) <-> A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) ) |
| 17 | 16 | ralbii | |- ( A. w e. A A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) <-> A. w e. A A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) ) |
| 18 | nfcv | |- F/_ x A |
|
| 19 | nfcv | |- F/_ x w |
|
| 20 | 1 19 | nffv | |- F/_ x ( F ` w ) |
| 21 | nfcv | |- F/_ x y |
|
| 22 | 1 21 | nffv | |- F/_ x ( F ` y ) |
| 23 | 20 22 | nfeq | |- F/ x ( F ` w ) = ( F ` y ) |
| 24 | nfv | |- F/ x w = y |
|
| 25 | 23 24 | nfim | |- F/ x ( ( F ` w ) = ( F ` y ) -> w = y ) |
| 26 | 18 25 | nfralw | |- F/ x A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) |
| 27 | nfv | |- F/ w A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) |
|
| 28 | fveqeq2 | |- ( w = x -> ( ( F ` w ) = ( F ` y ) <-> ( F ` x ) = ( F ` y ) ) ) |
|
| 29 | equequ1 | |- ( w = x -> ( w = y <-> x = y ) ) |
|
| 30 | 28 29 | imbi12d | |- ( w = x -> ( ( ( F ` w ) = ( F ` y ) -> w = y ) <-> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 31 | 30 | ralbidv | |- ( w = x -> ( A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) <-> A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 32 | 26 27 31 | cbvralw | |- ( A. w e. A A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) <-> A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 33 | 17 32 | bitri | |- ( A. w e. A A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) <-> A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 34 | 33 | anbi2i | |- ( ( F : A --> B /\ A. w e. A A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) ) <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 35 | 3 34 | bitri | |- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |