This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfdisjs5 | ⊢ Disjs = { 𝑟 ∈ Rels ∣ ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisjs2 | ⊢ Disjs = { 𝑟 ∈ Rels ∣ ≀ ◡ 𝑟 ⊆ I } | |
| 2 | cosscnvssid5 | ⊢ ( ( ≀ ◡ 𝑟 ⊆ I ∧ Rel 𝑟 ) ↔ ( ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ∧ Rel 𝑟 ) ) | |
| 3 | elrelsrelim | ⊢ ( 𝑟 ∈ Rels → Rel 𝑟 ) | |
| 4 | 3 | biantrud | ⊢ ( 𝑟 ∈ Rels → ( ≀ ◡ 𝑟 ⊆ I ↔ ( ≀ ◡ 𝑟 ⊆ I ∧ Rel 𝑟 ) ) ) |
| 5 | 3 | biantrud | ⊢ ( 𝑟 ∈ Rels → ( ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ↔ ( ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ∧ Rel 𝑟 ) ) ) |
| 6 | 4 5 | bibi12d | ⊢ ( 𝑟 ∈ Rels → ( ( ≀ ◡ 𝑟 ⊆ I ↔ ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ) ↔ ( ( ≀ ◡ 𝑟 ⊆ I ∧ Rel 𝑟 ) ↔ ( ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ∧ Rel 𝑟 ) ) ) ) |
| 7 | 2 6 | mpbiri | ⊢ ( 𝑟 ∈ Rels → ( ≀ ◡ 𝑟 ⊆ I ↔ ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) ) ) |
| 8 | 1 7 | rabimbieq | ⊢ Disjs = { 𝑟 ∈ Rels ∣ ∀ 𝑢 ∈ dom 𝑟 ∀ 𝑣 ∈ dom 𝑟 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑟 ∩ [ 𝑣 ] 𝑟 ) = ∅ ) } |