This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfdisjs5 | |- Disjs = { r e. Rels | A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisjs2 | |- Disjs = { r e. Rels | ,~ `' r C_ _I } |
|
| 2 | cosscnvssid5 | |- ( ( ,~ `' r C_ _I /\ Rel r ) <-> ( A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) /\ Rel r ) ) |
|
| 3 | elrelsrelim | |- ( r e. Rels -> Rel r ) |
|
| 4 | 3 | biantrud | |- ( r e. Rels -> ( ,~ `' r C_ _I <-> ( ,~ `' r C_ _I /\ Rel r ) ) ) |
| 5 | 3 | biantrud | |- ( r e. Rels -> ( A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) <-> ( A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) /\ Rel r ) ) ) |
| 6 | 4 5 | bibi12d | |- ( r e. Rels -> ( ( ,~ `' r C_ _I <-> A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) ) <-> ( ( ,~ `' r C_ _I /\ Rel r ) <-> ( A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) /\ Rel r ) ) ) ) |
| 7 | 2 6 | mpbiri | |- ( r e. Rels -> ( ,~ `' r C_ _I <-> A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) ) ) |
| 8 | 1 7 | rabimbieq | |- Disjs = { r e. Rels | A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) } |