This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the closed neighborhood of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 7-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| clnbgrval.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | dfclnbgr2 | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | clnbgrval.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | clnbgrval | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) ) |
| 4 | prssg | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ V ) → ( ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ↔ { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) | |
| 5 | 4 | elvd | ⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ↔ { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
| 6 | 5 | bicomd | ⊢ ( 𝑁 ∈ 𝑉 → ( { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝑁 ∈ 𝑉 → ( ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) ) |
| 8 | 7 | rabbidv | ⊢ ( 𝑁 ∈ 𝑉 → { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) |
| 9 | 8 | uneq2d | ⊢ ( 𝑁 ∈ 𝑉 → ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) ) |
| 10 | 3 9 | eqtrd | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) ) |